Транспорт питательных веществ

Активный транспорт

Здесь для переноса вещества через мембрану необходимо приложить энергию. Но зачем, а главное почему? Потому что такой транспорт идет против градиента концентрации, а без прикладывания энергии молекулу или ион просто не вытолкнуть. Разделяется на два варианта: первично-активный транспорт и вторично-активный транспорт, отличие между ними поймете чуть ниже.

Первично-активный транспорт

Здесь для того, чтобы перенести молекулы/ионы вещества на другую сторону мембраны используется энергия молекул АТФ. Классический вариант — натрий-калиевый насос. Этот насос представляет из себя белок, а именно фермент — АТФазу (помните, что «не все белки — ферменты, но все ферменты — белки» — десятая заповедь от кафедры биохимии).  Занимается тем, что переносит ионы натрия из клетки, а ионы калия внутрь клетки. То есть работает против градиента концентрации, ведь натрия очень много вне клетки, а калия наоборот мало.

У насоса есть участки связывания — два для калия и три для натрия. Состоит из двух субъединиц — альфа и бета, альфа это и есть переносчик, а бета похоже якорит его в мембране. На один цикл: переноса трех ионов натрия из клетки и двух ионов калия внутрь клетки, требуется одна молекула АТФ. Как видим, этот насос создает разницу потенциалов, так как в обмен на три заряженных иона внутрь клетки поступает только два — этому пареньку мы обязаны за отрицательный заряд внутри клетки. Действует такой насос во всех клетках, он не дает клетке лопнуть из-за избытка натрия (вспоминаем про воду).

Натрий-калиевая АТФаза

Кроме такого насоса есть еще несколько — Ca++ и H+ — АТФазы. Избыток кальция вредит клетке, так как он может запустить апоптоз. Водородный насос действует в париетальных клетках желудка и дистальном отделе канальца нефрона — в первом случае он создает кислую среду в желудке для функционирования пепсина. Да и вообще, из внешней среды поступает много всякой заразы, которой неприятно встречаться с кислотой. Во втором случае насос перемещает ионы водорода в просвет канальца. Полезная штука, а то прикинь — позанимался спортом и умер от ацидоза, не круто.

Вторично-активный транспорт.  

Тут одна молекула идет по градиенту концентрации и энергия, которая создается ей, используется для переноса другой молекулы. Представляете, сколько всего ионов натрия во внеклеточной жидкости? Вот и я не представляю, но очень много, а в клетке же наоборот его очень мало. Такая разница создает просто огромную энергию, которая идет на работу белка переносчика. Этот белок переносчик, как вы уже поняли — интегральный белок и имеет два участка связывания. Эти участки могут находиться на одной стороне белка или на разных. Поэтому такой транспорт можно разделить на два варианта:

1) Молекула, которая идет против градиента концентрации, переносится в одну сторону с молекулой, которая идет по градиенту концентрации. Это называется котранспорт (или симпорт). Так переносятся молекулы глюкозы и аминокислот из кишечника и канальцев нефрона. Натрий идет по градиенту концентрации внутрь клетки и захватывает с собой глюкозу или аминокислоты. Тут ты можешь сказать : «Чет странно, ведь в кишке много глюкозы после еды, почему она идет против градиента?». И да, это верно, в кишечнике много глюкозы. Но клеток очень много, а глюкоза растянута по всей поверхности кишки. Вот и получается, что в кишке ее много, но возле каждой клетки маловато. Такая же тема с аминокислотами.

Симпорт или котрнаспорт

2) Молекула идет против градиента концентрации, но не в одну сторону с переносимым по градиенту концентрации веществом — контртранспорт (или антипорт). Так происходит транспорт ионов водорода в проксимальных канальцах нефрона: водород попадает в просвет канальца, а натрий внутрь клетки. 

Контртранспорт или антипорт

Заметили кое-что? Клетка всегда чего-то боится: потерять или перебрать. Не всосать глюкозу и аминокислоты в кишечнике, либо смыть их в унитаз. И здесь она работает не только на свое благо, а на благо всего организма. Ведь ей не очень и нужна эта глюкоза, в ней ее достаточно, но она заботится не только о себе. А говорят, что коммунизм не построить , а он уже существует в организме каждого из нас. Ну это так, просто к слову пришлось… Перебрать же она боится, потому что из-за этого погибнет — поэтому натрий-калиевый насос работает постоянно, как и кальциевый.

Ну что сведем все это опять в нашу табличку?

Если не очень хорошо видно, то в конце есть файл со всеми схемами. Извиняйте.

Все что мы разбирали до этого относится к небольшим по размерам молекулам, а что делать с большими? Для этого есть две легенды, о которых ниже.

Облегченная диффузия

Облегченная диффузия – перенос веществ через цитоплазматическую мембрану по градиенту их концентрации с участием пермеаз (транслоказ) – специфических мембранных белков, способствующих прохождению веществ через цитоплазматическую мембрану.

Пермеаза фиксирует на себе молекулу переносимого вещества, вместе с ней преодолевает цитоплазматичекую мембрану. После этого комплекс «вещество-пермеаза» диссоциирует. Освободившаяся пермеаза, диффундирует к наружной поверхности, присоединяет новую молекулу вещества и транспортирует ее внутрь клетки.

Облегченная диффузия не требует расхода энергии, если наружная концентрация вещества выше внутренней, поскольку в таком случае вещество перемещается «вниз» по химическому градиенту. Скорость процесса зависит от концентрации вещества в наружном растворе. Предполагается, что выход продуктов обмена веществ из микробной клетки может также происходит по методу облегченной диффузии с помощью переносчиков.

Что такое пассивный транспорт

Пассивный транспорт — это движение молекул через мембрану через градиент концентрации без использования клеточной энергии движением. Он использует естественную энтропию для перемещения молекул из более высокой концентрации в более низкую концентрацию, пока концентрация не станет равной. Тогда не будет никакого чистого движения молекул в равновесии. Найдено четыре основных типа пассивного транспорта: осмос, простая диффузия, облегченная диффузия и фильтрация. Простое движение молекул через проницаемую мембрану называется простая диффузия, Небольшие неполярные молекулы используют простую диффузию. Расстояние диффузии должно быть меньше, чтобы поддерживать лучший поток. Пассивный транспорт через мембрану показан на рисунок 3.

Рисунок 3: Пассивный транспорт

В течение облегченная диффузияспециальные транспортные белки используются для направления движения полярных молекул и крупных ионов. Эти транспортные белки являются гликопротеинами и специфичны для конкретного белка. GLUT4 является транспортером глюкозы, который транспортирует глюкозу из кровотока в клетку. Это главным образом найдено в жировых и скелетных мышцах. Три типа транспортных белков участвуют в облегченной диффузии: канальные белки, аквапорины и белки-носители. Канальные белки сделать гидрофобные туннели через мембрану, позволяя выбранным гидрофобным молекулам проходить через мембрану. Немного канальные белки открыты все время, а некоторые — как белки ионных каналов. аквапоринов позвольте воде быстро пересечь мембрану. Белки-носители меняют свою форму, транспортируя молекулы-мишени через мембрану. Облегченная диффузия белками-носителями показана на фигуре 4.

Рисунок 4: Облегченная диффузия

фильтрование это движение растворенных веществ вместе с водой из-за гидростатического давления, создаваемого сердечно-сосудистой системой. Это происходит в капсуле Боумена в почках. осмос это движение воды через избирательно проницаемую мембрану. Это происходит от высокого водного потенциала к низкому водному потенциалу.

Термодинамика

Физиологический процесс может иметь место только в том случае, если он соответствует основным термодинамическим принципам. Мембранный транспорт подчиняется физическим законам, которые определяют его возможности и, следовательно, его биологическую полезность.
Общий принцип термодинамики, который регулирует перенос веществ через мембраны и другие поверхности, заключается в том, что обмен свободной энергии Δ G для переноса моля вещества с концентрацией C 1 из одного отсека в другой отсек, где он присутствует. в C 2 :

Δграммзнак равнорТбревно⁡C2C1{\ displaystyle \ Delta G = RT \ log {\ frac {C_ {2}} {C_ {1}}}}

Когда C 2 меньше, чем C 1 , Δ G отрицательна, и процесс термодинамически благоприятен. Поскольку энергия передается из одного отсека в другой, за исключением случаев, когда вмешиваются другие факторы, равновесие будет достигнуто там, где C 2 = C 1 , и где Δ G  = 0. Однако есть три обстоятельства, при которых это равновесие не будет достигнуто. , обстоятельства, которые жизненно важны для функционирования биологических мембран in vivo :

  • Макромолекулы на одной стороне мембраны могут предпочтительно связываться с определенным компонентом мембраны или химически модифицировать его. Таким образом, хотя концентрация растворенного вещества может фактически быть разной на обеих сторонах мембраны, доступность растворенного вещества снижается в одном из отсеков до такой степени, что для практических целей не существует градиента для движения транспорта.
  • Мембранный электрический потенциал может существовать , которые могут влиять на распределение ионов. Например, для переноса ионов снаружи внутрь возможно, что:
Δграммзнак равнорТбревно⁡CяпsяdеCотытsяdе+ZFΔп{\ displaystyle \ Delta G = RT \ log {\ frac {C_ {inside}} {C_ {outside}}} + ZF \ Delta P}

Где F — постоянная Фарадея, а Δ P — мембранный потенциал в вольтах . Если Δ P отрицательно, а Z положительно, вклад члена ZFΔP в Δ G будет отрицательным, то есть он будет способствовать переносу катионов изнутри клетки. Таким образом, если поддерживается разность потенциалов, состояние равновесия Δ G  = 0 не будет соответствовать эквимолярной концентрации ионов с обеих сторон мембраны.

Если процесс с отрицательным Δ G связан с процессом транспортировки, то глобальное Δ G будет изменено. Эта ситуация типична для активного транспорта и описывается следующим образом:

Δграммзнак равнорТбревно⁡CвнутриCза пределами+Δграммб{\ displaystyle \ Delta G = RT \ log {\ frac {C _ {\ text {inside}}} {C _ {\ text {outside}}}} + \ Delta G ^ {b}}

Где Δ G b соответствует благоприятной термодинамической реакции, такой как гидролиз АТФ или совместный транспорт соединения, которое перемещается в направлении его градиента.

Экзоцитоз и эндоцитоз

Начнем с экзоцитоза и сделаем это на каком-нибудь примере. Пусть это будут пищеварительные ферменты в поджелудочной железе. Синтезировала значит клетка липазу, но она ведь внутри клетки — это значит проку от нее мало. Нужно ее как-то переместить в проток поджелудочной железы, хорошо было бы использовать белок переносчик. А тут проблемка. Липаза слишком большая — ее не засунуть в белок переносчик. Но ничего — у клетки есть выход.

Все ферменты, белки плазмы, пептидные гормоны и так далее, синтезируются в упаковке — пузырьке (по строению он амфифильный). Оно и правильно, представьте — липаза попадает в цитоплазму клетки и просто переваривает ее. Эти пузырьки направляются к мембране, сливаются с ней и попадают в кровь, межклеточное вещество или проток поджелудочной железы. В общем куда им надо, туда они и попадают.

Экзоцитоз липазы

Теперь эндоцитоз. Все тоже самое только наоборот — это мое лучшее объяснение… Ладно, шутки кончились. На клеточной мембране есть определенный участок с рецепторами — окаймленная ямка. На рецепторах накапливаются макромолекулы, а потом ямка погружается в клетку и охватывает их, образуя пузырек. Этот пузырек направляется к лизосоме, где из него образуются мономеры. Эти мономеры клетка использует по своему усмотрению. Посмотрите картинку и все поймете, базарю.

Эндоцитоз

Таким способом идет фагоцитоз лейкоцитами, а еще так в клетку попадают липопротеиды низкой плотности — это переносчики холестерина и жирных кислот.

Что такое активная диффузия

Активная диффузия относится к перемещению молекул или ионов из области более низкой концентрации в более высокую концентрацию с помощью вспомогательных белков-переносчиков в клеточной мембране, используя клеточную энергию. Клетки накапливают глюкозу, аминокислоты и ионы посредством активной диффузии. Первичная активная диффузия и вторичная активная диффузия являются двумя типами активных механизмов диффузии, используемых клетками.

Первичная активная диффузия

Первичная активная диффузия относится к транспорту молекул против градиента концентрации путем использования клеточной энергии в форме АТФ. Следовательно, первичный активный транспорт использует молекулы белка-носителя, приводимые в действие АТФ. Первичный активный транспорт наиболее очевиден в натриево-калиевом насосе (Na + / K + ATPase), который поддерживает потенциал покоя клетки. Энергия, выделяемая при гидролизе АТФ, используется для накачки трех ионов натрия из клетки и двух ионов калия в клетку. Здесь ионы натрия транспортируются от более низкой концентрации 10 мМ до более высокой концентрации 145 мМ. Ионы калия переносятся из концентрации 140 мМ внутри клетки до концентрации 5 мМ внеклеточной жидкости. Действие натриево-калиевой помпы показано на Рисунок 1.

Рисунок 1: натриево-калиевый насос

Протонный / калиевый насос (H + / K + ATPase) находится в слизистой оболочке желудка, поддерживая кислую среду внутри желудка. Омепразол является ингибитором протонно-калиевой помпы, снижая кислотный рефлюкс в желудке. Как окислительное фосфорилирование, так и фотофосфорилирование цепи переноса электронов также используют первичный активный транспорт для создания восстановительной способности.

Вторичная активная диффузия

Вторичная активная диффузия относится к переносу молекул против градиента концентрации за счет энергии, выделяющейся из электрохимического градиента. Здесь трансмембранные белки состоят из канальных белков (порообразующих белков). При вторичном активном транспорте наблюдается одновременное движение другого вещества против градиента концентрации. Следовательно, канальные белки, вовлеченные во вторичную активную диффузию, могут быть идентифицированы как котранспортеры. Два типа котранспортеров — это антипортеры и сторонники. Действие котранспортеров показано в фигура 2.

Рисунок 2: Котранспортеры

Конкретные ионы и растворенные вещества транспортируются антипортами в противоположных направлениях. Натриево-кальциевый обменник, который позволяет восстановить концентрацию ионов кальция в кардиомиоците после потенциала действия, является наиболее распространенным примером антипортеров. Ионы транспортируются через градиент концентрации, в то время как растворенное вещество транспортируется против градиента концентрации сторонниками. Здесь обе молекулы транспортируются в одном направлении через клеточную мембрану. SGLT2 является симпортером, который транспортирует глюкозу в клетку вместе с ионами натрия.

Активный транспорт

Активный транспорт является основным механизмом избирательного переноса вещества через цитоплазматическую мембрану в клетку против градиента концентрации. Этот процесс протекает при участии локализованных в цитоплазматической мембране переносчиков – пермеаз. Это вещества белковой природы, высокочувствительные к субстрату.

Активным транспортом в цитоплазму бактериальной клетку поступает подавляющее большинство разнообразных веществ (ионы, углеводы, аминокислоты, липиды).

Для активного транспорта необходимы затраты энергии. Ее получают в виде АТФ, либо за счет протондвижущей силы энергизованной мембраны.

У многих микробов, чаще у грамотрицательных бактерий, в активном транспорте принимают участие связующие белки. Эти вещества не входят в структуру мембраны, не идентичны пермеазам. Они локализованы в периплазматическом пространстве. Связующие белки не имеют каталитической активности, но обладают высоким сродством к определенным питательным веществам, аминокислотам, углеводам, неорганическим ионам. Выделено и изучено более 100 различных связующих белков.

Активный транспорт осуществляется двумя путями:

  1. Без химической модификации переносимого вещества.
  2. С химической модификацией переносимого вещества.

В первом случае молекула питательного вещества образует комплекс с белком периплазматического пространства. Белок взаимодействует со специфической пермеазой цитоплазматической мембраны. После энергозависимого проникновения через цитоплазматическую мембрану комплекс «субстрат – белок периплазмы – пермеаза» диссоциирует и молекула субстрата освобождается.

Во втором случае наблюдается следующие последовательные процессы:

  1. Фосфорилирование мембранного фермента-2 со стороны цитоплазмы фосфоенолпируватом.
  2. Молекула субстрата связывается на поверхности цитоплазматической мембраны фосфорилированным ферментом-2.
  3. Энергозависимый транспорт молекулы субстрата через мембрану в цитоплазму.
  4. Перенос фосфатной группы на молекулу сбстрата.
  5. Диссоциация в цитоплазме комплекса «субстрат-фермент».

Отмечается, что молекулы субстрата аккумулируются в цитоплазме клеток и теряют способность выйти из них именно за счет фосфорилирования.

Отдельные авторы второй путь активного транспорта (с химической модификацией переносимого вещества) выделяют в отдельный (четвертый) способ транспорта питательных веществ – транслокацию (перенос) групп (радикалов).

Мембранная селективность

Поскольку основной характеристикой переноса через биологическую мембрану является ее избирательность и ее последующее поведение в качестве барьера для определенных веществ, физиология, лежащая в основе этого явления, была тщательно изучена. Исследования селективности мембран классически подразделяются на исследования, касающиеся электролитов и неэлектролитов.

Селективность электролита

Ионные каналы определяют внутренний диаметр, который позволяет проходить небольшим ионам, что связано с различными характеристиками ионов, которые потенциально могут переноситься. Поскольку размер иона связан с его химическим составом, можно априори предположить, что канал, диаметр поры которого был достаточен для прохождения одного иона, также позволил бы переносить другие ионы меньшего размера, однако это не встречаются в большинстве случаев. Помимо размера, существуют две характеристики, которые важны для определения селективности пор мембраны: способность к дегидратации и взаимодействие иона с внутренними зарядами поры.
Чтобы ион прошел через пору, он должен отделиться от молекул воды, которые покрывают его в последовательных слоях сольватации . Склонность к дегидратации или возможность сделать это связана с размером иона: более крупные ионы могут делать это легче, чем более мелкие, так что пора со слабыми полярными центрами будет предпочтительно пропускать более крупные ионы через ионную поверхность. поменьше. Когда внутренняя часть канала состоит из полярных групп боковых цепей составляющих аминокислот, взаимодействие дегидратированного иона с этими центрами может быть более важным, чем возможность дегидратации, для придания специфичности каналу. Например, канал, состоящий из гистидинов и аргининов с положительно заряженными группами, будет избирательно отталкивать ионы той же полярности, но будет способствовать прохождению отрицательно заряженных ионов. Кроме того, в этом случае самые маленькие ионы смогут более тесно взаимодействовать из-за пространственного расположения молекулы (стерильности), что значительно увеличивает заряд-зарядовые взаимодействия и, следовательно, преувеличивает эффект.

Неэлектролитная селективность

Неэлектролиты, вещества, которые обычно являются гидрофобными и липофильными, обычно проходят через мембрану путем растворения в липидном бислое и, следовательно, путем пассивной диффузии. Для тех неэлектролитов , чьи транспорт через мембрану, опосредованное с помощью транспортного белка способность к диффузному, вообще, в зависимости от коэффициента K раздела . Частично заряженные неэлектролиты, которые более или менее полярны, такие как этанол, метанол или мочевина, могут проходить через мембрану через водные каналы, погруженные в мембрану. Не существует эффективного механизма регуляции, ограничивающего этот транспорт, что указывает на внутреннюю уязвимость клеток к проникновению этих молекул.

Общие сведения

Одним из великих чудес клеточной мембраны является ее способность регулировать концентрацию веществ внутри клетки. Эти вещества включают ионы, такие как Ca ++ , Na + , K + и Cl — ; питательные вещества, включая сахара, жирные кислоты и аминокислоты; и отходы, особенно углекислый газ (СО 2 ), который должен покинуть клетку.

Структура липидного бислоя мембраны обеспечивает первый уровень контроля. Фосфолипиды плотно упакованы вместе, а мембрана имеет гидрофобную внутреннюю часть. Эта структура делает мембрану избирательно проницаемой. Мембрана с селективной проницаемостьюпозволяет только веществам, отвечающим определенным критериям, проходить через него без посторонней помощи. В случае клеточной мембраны только относительно небольшие неполярные материалы могут проходить через липидный бислой (помните, что липидные хвосты мембраны неполярные). Некоторыми примерами этого являются другие липиды, газы кислорода и углекислого газа и спирт. Однако водорастворимые материалы, такие как глюкоза, аминокислоты и электролиты, нуждаются в некоторой помощи для прохождения через мембрану, поскольку они отталкиваются гидрофобными хвостами фосфолипидного бислоя. Все вещества, которые проходят через мембрану, делают это одним из двух общих методов, которые классифицируются в зависимости от того, требуется ли энергия. Пассивный транспорт — это движение веществ через мембрану без затрат клеточной энергии. По сравнению,Активный транспорт — это движение веществ через мембрану с использованием энергии аденозинтрифосфата (АТФ).

Транспорт через несколько слоев клеток

Буквально пару слов. Разберем на примере кишки — там несколько слоев (три, ну ладно — четыре, если с подслизистой). Через все должна пройти глюкоза, но как? Это похоже на эстафету: сначала из кишечника вторично-активным транспортом глюкоза попадает в клетку, потом в следующую клетку уже по облегченной диффузии. Так она доходит до крови, а дальше уже идет по своим делам. Всё!

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Схемы по транспорту Скачать

Активный транспорт веществ через мембрану клеток

Для всех способов транспортировки, описанных выше, клетка не расходует энергию. Мембранные белки, которые помогают в пассивном транспорте веществ, делают это без использования АТФ. Во время активного транспорта АТФ требуется для перемещения вещества через мембрану, часто с помощью белковых носителей, и обычно против градиента концентрации.

Один из наиболее распространенных видов активного транспорта включает белки, которые служат насосами. Слово «насос», вероятно, вызывает мысли об использовании энергии для накачки шины велосипеда или баскетбола. Точно так же энергия от АТФ требуется для того, чтобы эти мембранные белки транспортировали вещества — молекулы или ионы — через мембрану, обычно против их градиентов концентрации (от области низкой концентрации до области высокой концентрации).

Натрий-калиевый насос, который также называют Na + / K + АТФазы, транспортирует натрий из клетки , в то время как перемещение калия в клетку. Насос Na + / K + является важным ионным насосом, обнаруженным в мембранах многих типов клеток. Эти насосы особенно распространены в нервных клетках, которые постоянно откачивают ионы натрия и вытягивают ионы калия для поддержания электрического градиента через их клеточные мембраны. Электрический градиентразница в электрическом заряде в пространстве Например, в случае нервных клеток электрический градиент существует между внутренней и внешней частью клетки, причем внутренняя часть заряжена отрицательно (около -70 мВ) относительно внешней стороны. Отрицательный электрический градиент поддерживается, потому что каждый насос Na + / K + выводит три иона Na + из клетки и два иона K + в клетку для каждой используемой молекулы АТФ.

Натриево-калиевый насос. Натриево-калиевая помпа обнаружена во многих клеточных (плазменных) мембранах. Приведенный в действие ATP, насос перемещает ионы натрия и калия в противоположных направлениях, каждый против его градиента концентрации. За один цикл работы насоса три иона натрия выдавливаются, а два иона калия импортируются в клетку.

Этот процесс настолько важен для нервных клеток, что на него приходится большая часть их использования АТФ. Активные транспортные насосы могут также работать вместе с другими активными или пассивными транспортными системами для перемещения веществ через мембрану. Например, натриево-калиевый насос поддерживает высокую концентрацию ионов натрия вне клетки. Поэтому, если клетке нужны ионы натрия, все, что нужно сделать, это открыть пассивный натриевый канал, поскольку градиент концентрации ионов натрия заставит их диффундировать в клетку. Таким образом, действие активного транспортного насоса (натриево-калиевого насоса) обеспечивает пассивный транспорт ионов натрия путем создания градиента концентрации. Когда активный транспорт обеспечивает транспорт другого вещества таким образом, это называется вторичным активным транспортом.

Симпортеры — вторичные активные транспортеры, которые перемещают два вещества в одном направлении. Например, натрий-глюкозный симпортер использует ионы натрия, чтобы «втянуть» молекулы глюкозы в клетку. Поскольку клетки накапливают глюкозу для получения энергии, концентрация глюкозы в клетке обычно выше, чем снаружи. Однако благодаря действию натриево-калиевого насоса ионы натрия легко диффундируют в клетку, когда симпортер открыт. Поток ионов натрия через симпортер обеспечивает энергию, которая позволяет глюкозе проходить через симпортер в клетку, против ее градиента концентрации.

И наоборот, антипортеры — это вторичные активные транспортные системы, которые транспортируют вещества в противоположных направлениях. Например, антипортер ионов натрия-водорода использует энергию внутреннего потока ионов натрия для перемещения ионов водорода (H +) из клетки. Натриево-водородный антипортер используется для поддержания рН внутри клетки.

Другие формы активного транспорта не включают мембранные носители.

>

Эндоцитоз (введение «в клетку») — это процесс поглощения клеткой материала, заключая его в часть клеточной мембраны и затем отщипывая эту часть мембраны.

Три формы эндоцитоза — особого транспорта веществ через клеточную стенку

Эндоцитоз является формой активного транспорта, при котором клетка обволакивает внеклеточные материалы, используя свою клеточную мембрану. При фагоцитозе, который является относительно неселективным, клетка принимает большую частицу. При пиноцитозе клетка поглощает мелкие частицы в жидкости.

Напротив, рецептор-опосредованный эндоцитоз довольно избирателен. Когда внешние рецепторы связывают определенный лиганд, клетка реагирует путем эндоцитоза лиганда.

После защемления часть мембраны и ее содержимое становятся независимым внутриклеточным пузырьком. Пузырек является перепончатая мешка-сферическая и полые органеллы , ограниченную липидной двухслойной мембраной. Эндоцитоз часто приносит материалы в клетку, которые должны быть расщеплены или переварены. Фагоцитоз(«Поедание клеток») — это эндоцитоз крупных частиц. Многие иммунные клетки участвуют в фагоцитозе вторгающихся патогенов.

Как и маленькие Pac-клетки, их работа заключается в патрулировании тканей организма на предмет нежелательных веществ, таких как проникновение в бактериальные клетки, их фагоцитирование и переваривание. В отличие от фагоцитоза, пиноцитоз («питье клеток») переносит жидкость, содержащую растворенные вещества, в клетку через мембранные везикулы. Фагоцитоз и пиноцитоз поглощают большие порции внеклеточного материала, и они, как правило, не являются высокоселективными в отношении веществ, которые они вносят. Клетки регулируют эндоцитоз конкретных веществ посредством рецептор-опосредованного эндоцитоза. Рецептор-опосредованного эндоцитозаявляется эндоцитоз частью клеточной мембраны, которая содержит множество рецепторов, которые являются специфическими для определенного вещества. Как только поверхностные рецепторы связали достаточное количество определенного вещества (лиганда рецептора), клетка будет эндоцитозировать часть клеточной мембраны, содержащую комплексы рецептор-лиганд. Железо, необходимый компонент гемоглобина, таким образом подвергается эндоцитозу эритроцитами. Железо связано с белком трансферрин в крови. Специфические рецепторы трансферрина на поверхности эритроцитов связывают молекулы железа-трансферрина, и клетки эндоцитозируют комплексы рецептор-лиганд.

В отличие от эндоцитоза, экзоцитоз (выведение «из клетки») — это процесс экспорта материала клетками с использованием везикулярного транспорта.

Экзоцитоз. Экзоцитоз очень похож на эндоцитоз наоборот. Материал, предназначенный для экспорта, упакован в пузырек внутри клетки. Мембрана везикулы сливается с клеточной мембраной, и содержимое высвобождается во внеклеточное пространство.

Многие клетки производят вещества, которые должны секретироваться, например, фабрика, производящая продукцию для экспорта. Эти вещества, как правило, упакованы в мембранные пузырьки внутри клетки. Когда везикулярная мембрана сливается с клеточной мембраной, везикула высвобождает свое содержимое в интерстициальную жидкость. Везикулярная мембрана становится частью клеточной мембраны. Клетки желудка и поджелудочной железы производят и выделяют пищеварительные ферменты посредством экзоцитоза.

Ферментные продукты панкреатических клеток. Ацинарные клетки поджелудочной железы производят и выделяют много ферментов, которые переваривают пищу. Крошечные черные гранулы на этой электронной микрофотографии представляют собой секреторные пузырьки, заполненные ферментами, которые будут экспортироваться из клеток посредством экзоцитоза.

Эндокринные клетки производят и выделяют гормоны, которые передаются по всему организму, а определенные иммунные клетки вырабатывают и выделяют большое количество гистамина, химического вещества, важного для иммунных реакций

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector