Плотность жидкости
Содержание:
- Чем измеряется плотность бензина?
- Когда сила Архимеда не работает
- Единицы измерения плотности
- Правила отбора проб
- Плотность воды в зависимости от температуры
- Формула нахождения плотности [ править | править код ]
- Решение задач: плотность вещества
- Добыча, производство
- Плотности некоторых газов [ править | править код ]
- Физические свойства воды при температуре от 0 до 100°С
- Виды плотности щебня
- Как пользоваться калькулятором плотности:
- Теплопроводность воды в зависимости от температуры и давления
- Плотность воды в зависимости от температуры
Чем измеряется плотность бензина?
Любой бензин представляет собой жидкую смесь углеводородов, полученную в результате фракционной перегонки нефти. Эти углеводороды могут быть классифицированы на ароматические соединения, которые имеют кольца атомов углерода, и алифатические соединения, которые состоят только из прямых углеродных цепей. Следовательно, бензин — это класс соединений, а не конкретная смесь, поэтому его состав может варьироваться в широких пределах.
Самый простой способ определения плотности в домашних условиях следующий:
- Выбирается любая градуированная ёмкость, которая взвешивается.
- Результат записывается.
- Ёмкость заполняется 100 мл бензина и также взвешивается.
- Масса пустой ёмкости вычитается из массы заполненной.
- Результат делится на объём бензина, который находился в ёмкости. Это и будет плотность горючего.
При наличии ареометра можно выполнить измерение альтернативным способом. Ареометр — устройство, которое реализует принцип Архимеда для измерения удельного веса. Этот принцип гласит, что объект, плавающий в жидкости, вытеснит количество воды, равное весу объекта. По показаниям шкалы ареометра устанавливают искомый параметр.
Последовательность измерений такова:
Заполнить прозрачную ёмкость и аккуратно поместите ареометр в бензин.
Вращать ареометр, чтобы вытеснить все пузырьки воздуха и позволить стабилизировать положение прибора на поверхности бензина
Важно удалить пузырьки воздуха, потому что они увеличат плавучесть ареометра.
Установить ареометр так, чтобы поверхность бензина была на уровне глаз.
Записать значение шкалы, соответствующей уровню поверхности бензина. Одновременно записывают и температуру, при которой происходило измерение.
Обычно бензин имеет плотность в пределах 700… 780 кг/м3, в зависимости от его точного состава. Ароматические соединения менее плотные, чем алифатические, поэтому измеренный показатель может указывать на относительную долю этих соединений в бензине.
Значительно реже для определения плотности бензинов используют пикнометры (см. ГОСТ 3900-85), поскольку данные приборы для летучих и маловязких жидкостей не отличаются стабильностью своих показаний.
АИ-92
Стандарт устанавливает, что плотность бензина марки АИ-92 неэтилированного должна находиться в пределах 760±10 кг/м3. Замеры должны быть произведены при температуре 15ºС.
АИ-95
Стандартное значение плотности бензина марки АИ-95, которая была измерена при температуре 15ºС, равно 750±5 кг/м3.
АИ-100
Торговая марка этого бензина – Лукойл Экто 100 – устанавливает нормативный показатель плотности, кг/м3, в пределах 725…750 (также при 15ºС).
Когда сила Архимеда не работает
- Если тело плотно прилегает к поверхности. Если между телом и поверхностью нет жидкости или газа — нет и выталкивающей силы. Именно поэтому подводным лодкам нельзя ложиться на илистое дно — мощности их двигателей не хватит, чтобы преодолеть давление толщи воды сверху.
- В невесомости. Наличие веса у жидкости или газа — обязательное условие для возникновения архимедовой силы. В состоянии невесомости горячий воздух не поднимается, а холодный не опускается. Поэтому на МКС создают принудительную конвекцию воздуха с помощью вентиляторов.
- В растворах и смесях. Если в воду налить спирт, на него не будет действовать сила Архимеда, хотя плотность спирта меньше плотности воды. Поскольку связь между молекулами спирта слабее, чем связь молекул воды, он растворится в воде, и образуется новая жидкость — водный раствор спирта.
Единицы измерения плотности
Официальной единицей измерения плотности в системе СИ является кг/м³. Поскольку это довольно большой объем, то для удобства чаще всего используют
- г/см³ для твердых веществ,
- г/мл для жидкостей,
- г/л для газов.
Плотность воды составляет примерно 1 грамм / кубический сантиметр. Она принимается за стандартное значение для расчетов.
Другие единицы измерения плотности
В качестве других единиц измерения плотности, также используются метрические тонны и литры, хотя они не включены в Международную систему СИ. Другие единицы включают:
- грамм на миллилитр (г/мл)
- метрическая тонна на кубический метр (т/м³)
- килограмм на литр (кг/л)
- мегаграмм (метрическая тонна) на кубический метр (мг/м³)
- грамм на кубический сантиметр (г/см³)
1г/см³ = 1000 кг/м³ - килограмм на кубический дециметр (кг/дм³ )
Чтобы сделать быстрый и точный перевод из одних величин в другие вы можете использовать наш конвертер плотности.
Правила отбора проб
Общие требования к процедуре отбора проб воды отражены в ГОСТ 31861 — 2012 (с 01 августа 2021 года — ГОСТ Р 59024-2020) и ГОСТ 17.1.5.05-85.
Для определения цветности в стеклянную или пластиковую емкость отбирают не менее 200 см воды (питьевой или природной). К анализу приступают в кратчайшие сроки — не позднее, чем через шесть часов после проботбора. При невозможности провести анализ в указанные сроки, пробу помещают в холодильную камеру при температуре от 2 °С до 8 °С, но не более, чем на 24 ч. Перед анализом охлажденная проба выдерживается при комнатной температуре не менее двух часов. Консервация пробы не допускается.
Плотность воды в зависимости от температуры
Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?
Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.
Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.
В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.
Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице. Плотность воды при различных температурах — таблица
t, °С | ρ, кг/м3 | ρ, г/мл | t, °С | ρ, кг/м3 | ρ, г/мл | t, °С | ρ, кг/м3 | ρ, г/мл |
999,8 | 0,9998 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 | |
0,1 | 999,8 | 0,9998 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999,9 | 0,9999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999,9 | 0,9999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999,9 | 0,9999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999,7 | 0,9997 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999,5 | 0,9995 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999,2 | 0,9992 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503,5 | 0,5035 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488,5 | 0,4885 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470,6 | 0,4706 |
52 | 987,1 | 0,9871 | 150 | 916,8 | 0,9168 | 370 | 448,4 | 0,4484 |
54 | 986,2 | 0,9862 | 160 | 907,3 | 0,9073 | 371 | 435,2 | 0,4352 |
56 | 985,2 | 0,9852 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984,2 | 0,9842 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983,2 | 0,9832 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |
Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.
Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.
Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.
Формула нахождения плотности [ править | править код ]
Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:
ρ = m V , ho =>,>
где m
— масса тела,V — его объём; формула является просто математической записью определения термина «плотность», данного выше.
При вычислении плотности газов при нормальных условиях эта формула может быть записана и в виде:
ρ = M V m , ho =>>,>где М
— молярная масса газа, V m >— молярный объём (при нормальных условиях приближённо равен 22,4 л/моль).
Плотность тела в точке записывается как
ρ = d m d V , ho =>,>
тогда масса неоднородного тела (тела с плотностью, зависящей от координат) рассчитывается как
m = ∫ ρ ( r ) d 3 r = ∫ ρ ( r ) d V = ∫ d m . ho (mathbf )d^<3>mathbf=int ho (mathbf)dV=int dm.>
Решение задач: плотность вещества
А теперь давайте тренироваться!
Задача 1
Цилиндр 1 поочерёдно взвешивают с цилиндром 2 такого же объёма, а затем с цилиндром 3, объем которого меньше (как показано на рисунке).
Какой цилиндр имеет максимальную среднюю плотность?
Решение:
Плотность тел прямо пропорциональна массе и обратно пропорциональна объему:
р = m/V
Исходя из проведенных опытов можно сделать следующие выводы:
1) масса первого цилиндра больше массы второго цилиндра при одинаковом объеме. Значит плотность первого цилиндра выше плотности второго.
2) масса первого цилиндра равна массе третьего цилиндра, объем которого меньше. Следовательно, плотность третьего цилиндра больше плотности первого цилиндра.
Таким образом, средние плотности цилиндров:
р2 < р1 < р3
Ответ: 3.
Задача 2
Шар 1 последовательно взвешивают на рычажных весах с шаром 2 и шаром 3 (как показано на рисунке). Для объёмов шаров справедливо соотношение V1 = V3 < V2.
Какой шар имеет максимальную среднюю плотность?
Решение:
Из рисунка ясно, что масса шаров 1 и 2 равна — следовательно, плотность второго шара меньше, чем первого. Третий шар тяжелее, чем первый при одинаковом объёме, поэтому плотность третьего шара больше плотности первого. Таким образом, максимальную среднюю плотность имеет шар 3.
Ответ: 3
Задача 3
Найти плотность шара объемом 0,5 м^3 и массой 1,5 кг.
Решение:
Возьмем формулу плотности и подставим в нее данные нам значения.
р = m/V
р = 1,5/0,5 = 3 кг/м^3
Ответ: р = 3 кг/м^3
Плавание тел
Почему шарик с гелием взлетает? Или мяч при игре в водное поло не тонет?
Жидкости и газы действуют на погруженные тела с выталкивающей силой. Подробно это явление рассматривают в теме «Сила Архимеда». Если говорить простым языком: если плотность тела, погруженного в воду, больше плотности воды — тело пойдет ко дну. Если меньше – оно всплывет на поверхность.
Задача 1
Стальной шарик в воде падает медленнее, чем в воздухе. Чем это объясняется?
Решение:
Плотность воды значительно выше, чем воздуха, поэтому стальной шарик в воде падает медленнее
Задача 2
В таблице даны плотности некоторых твердых веществ. Если вырезать из этих веществ кубики, то какие кубики смогут плавать в воде? Плотность воды — 1000 кг/м3.
Название вещества |
Плотность вещества, кг/м3 |
Алюминий |
2700 |
Парафин |
900 |
Плексиглас |
1200 |
Фарфор |
2300 |
Сосна |
400 |
Решение:
Плавать будут кубики, плотность которых меньше плотности воды, то есть сделанные из парафина или сосны.
Добыча, производство
Характеристики, две из которых рассмотрены далее, зависят от вида щебня, их несколько, по типам их возможно классифицировать на:
- первичные, получаемые в результате дробления и сортировки горной породы, которая предварительно была добыта в карьере, открытым способом;
- вторичные, получаемые посредством переработки отходов строительства, металлургического шлака или стеклобоя, добыча сырья в данных случаях не требуется, а производство включает аналогичные этапы.
Дробление. Фото Грунтовозов
Многообразие типов исходного сырья, их свойств обеспечивает и различия в характеристиках, составе и сферах применения щебня.
Плотности некоторых газов [ править | править код ]
Плотность газов, кг/м³ при НУ.
Азот | 1,250 | Кислород | 1,429 |
Аммиак | 0,771 | Криптон | 3,743 |
Аргон | 1,784 | Ксенон | 5,851 |
Водород | 0,090 | Метан | 0,717 |
Водяной пар (100 °C) | 0,598 | Неон | 0,900 |
Воздух | 1,293 | Радон | 9,81 |
Гексафторид вольфрама | 12,9 | Углекислый газ | 1,977 |
Гелий | 0,178 | Хлор | 3,164 |
Дициан | 2,38 | Этилен | 1,260 |
Для вычисления плотности произвольного идеального газа, находящегося в произвольных условиях, можно использовать формулу, выводящуюся из уравнения состояния идеального газа:
ρ = p M R T ho =>> ,
p — давление,
M — молярная масса,
R — универсальная газовая постоянная, равная приблизительно 8,314 Дж/(моль·К)
T — термодинамическая температура.
Физические свойства воды при температуре от 0 до 100°С
В таблице представлены следующие физические свойства воды: плотность воды ρ, удельная энтальпия h, удельная теплоемкость Cp, теплопроводность воды λ, температуропроводность воды а, вязкость динамическая μ, вязкость кинематическая ν, коэффициент объемного теплового расширения β, коэффициент поверхностного натяжения σ, число Прандтля Pr. Физические свойства воды приведены в таблице при нормальном атмосферном давлении в интервале от 0 до 100°С.
Физические свойства воды существенно зависят от ее температуры. Наиболее сильно эта зависимость выражена у таких свойств, как удельная энтальпия и динамическая вязкость. При нагревании значение энтальпии воды значительно увеличивается, а вязкость существенно снижается. Другие физические свойства воды, например, коэффициент поверхностного натяжения, число Прандтля и плотность уменьшаются при росте ее температуры. К примеру, плотность воды при нормальных условиях (20°С) имеет значение 998,2 кг/м3, а при температуре кипения снижается до 958,4 кг/м3.
Такое свойство воды, как теплопроводность (или правильнее — коэффициент теплопроводности) при нагревании имеет тенденцию к увеличению. Теплопроводность воды при температуре кипения 100°С достигает значения 0,683 Вт/(м·град). Температуропроводность H2O также увеличивается при росте ее температуры.
Следует отметить нелинейное поведение кривой зависимости удельной теплоемкости этой жидкости от температуры. Ее значение снижается в интервале от 0 до 40°С, затем происходит постепенный рост теплоемкости до величины 4220 Дж/(кг·град) при 100°С. Физические свойства воды при атмосферном давлении — таблица
t, °С → | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
ρ, кг/м3 | 999,8 | 999,7 | 998,2 | 995,7 | 992,2 | 988 | 983,2 | 977,8 | 971,8 | 965,3 | 958,4 |
h, кДж/кг | 42,04 | 83,91 | 125,7 | 167,5 | 209,3 | 251,1 | 293 | 335 | 377 | 419,1 | |
Cp, Дж/(кг·град) | 4217 | 4191 | 4183 | 4174 | 4174 | 4181 | 4182 | 4187 | 4195 | 4208 | 4220 |
λ, Вт/(м·град) | 0,569 | 0,574 | 0,599 | 0,618 | 0,635 | 0,648 | 0,659 | 0,668 | 0,674 | 0,68 | 0,683 |
a·108, м2/с | 13,2 | 13,7 | 14,3 | 14,9 | 15,3 | 15,7 | 16 | 16,3 | 16,6 | 16,8 | 16,9 |
μ·106, Па·с | 1788 | 1306 | 1004 | 801,5 | 653,3 | 549,4 | 469,9 | 406,1 | 355,1 | 314,9 | 282,5 |
ν·106, м2/с | 1,789 | 1,306 | 1,006 | 0,805 | 0,659 | 0,556 | 0,478 | 0,415 | 0,365 | 0,326 | 0,295 |
β·104, град-1 | -0,63 | 0,7 | 1,82 | 3,21 | 3,87 | 4,49 | 5,11 | 5,7 | 6,32 | 6,95 | 7,52 |
σ·104, Н/м | 756,4 | 741,6 | 726,9 | 712,2 | 696,5 | 676,9 | 662,2 | 643,5 | 625,9 | 607,2 | 588,6 |
Pr | 13,5 | 9,52 | 7,02 | 5,42 | 4,31 | 3,54 | 2,93 | 2,55 | 2,21 | 1,95 | 1,75 |
Примечание: Температуропроводность в таблице дана в степени 108 , вязкость в степени 106 и т. д. для других свойств. Размерность физических свойств воды выражена в единицах .
Виды плотности щебня
Поскольку гранулы этого сыпучего стройматериала прослоены воздухом, плотность его насыпи иная, нежели 1 куб. м недробленой породы. Чем мельче будут гранулы, тем больше станет их удельная плотность и, следовательно, выше вес 1 куб. м, то есть насыпная плотность. Зависит она от того, как много в ней твердых, особо прочных минеральных вкраплений.
Таблица характеристик щебня.
Чтобы определить насыпную плотность щебня, используют пустую емкость объемом до 50 л. Ее взвешивают, затем насыпают щебень слоем 1 м и снова взвешивают.
Формула, по которой вычисляется искомый показатель, измеряемый в кг/м³:
P = (m2 m1) : V,
где P плотность строительного щебня, m2 масса емкости со щебнем, m1 масса пустой емкости, V ее объем.
Такие исследования проводят в лабораторных условиях с использованием емкостей специальной формы и размеров, которые регламентированы ГОСТом 9758-86. Но насыпную плотность несложно определить и самостоятельно. Для этого можно использовать обычное корыто, в котором замешивается раствор. Нужно взвесить пустое корыто, наполнить его щебнем вровень с краями, снова взвесить и произвести расчет по этой же формуле. Объем корыта V легко узнать, перемножив его длину, ширину и высоту.
Значение насыпной плотности в строительстве трудно переоценить. Ее нужно знать и обязательно учитывать при приготовлении раствора. Ведь чем она выше, тем меньше цемента понадобится. Кроме того, это и экономия платы за транспортировку и хранение материала.
Насыпная плотность щебня существенно отличается от истинной (реальной). Ее определяют только лабораторно, когда требуется знать степень пористости материала. Для этого его предварительно измельчают, высушивают, чтобы удалить все пустоты, а потом взвешивают. Насыпная плотность щебня, например, фракции 5-20 мм 1320 кг/м³, а истинная почти 2600 кг/м³, то есть практически вдвое больше.
Как пользоваться калькулятором плотности:
Следуйте данным инструкциям по расчету с помощью этого онлайн-инструмента. С помощью этого калькулятора вы можете производить расчеты в простом и продвинутом режимах. Давайте взглянем!
Входы:
- Прежде всего, выберите во вкладке то, что вам нужно найти.
- Затем введите значения во все обозначенные поля в соответствии с выбранной опцией.
- Наконец, нажмите кнопку “Рассчитать”.
Выходы:
Как только вы заполните все поля, калькулятор покажет:
- Плотность объекта
- Масса объекта
- Объем объекта
- Корень кубический из объема
Заметка:
Есть дополнительное поле, где вы можете ввести категорию материала и название материала, этот калькулятор найдет плотность выбранного материала. Если вы не знаете значение объема, используйте предварительный вариант этого калькулятора для расчета объема, в противном случае используйте простой режим.
Теплопроводность воды в зависимости от температуры и давления
В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 1 до 500 атм.
Как известно, вода при атмосферном давлении закипает и переходит в пар при температуре 100°С. Коэффициент теплопроводности воды в этих условиях равен 0,683 Вт/(м·град). При увеличении давления растет и температура кипения воды (закон Клапейрона — Клаузиуса). По данным таблицы видно, при давлении в 100 раз выше атмосферного (100 бар) вода находится в виде пара при температуре от 310°С и имеет теплопроводность 0,523 Вт/(м·град).
Таким образом, следует отметить, что изменение давления влияет как на температуру кипения воды, так и на величину ее теплопроводности. Высокая теплопроводность воды достигается за счет роста давления — при повышении давления коэффициент теплопроводности воды увеличивается. Например, при давлении 1 бар и температуре 20°С вода имеет теплопроводность, равную 0,603 Вт/(м·град). При росте давления до 500 бар теплопроводность воды становится равной 0,64 Вт/(м·град) при этой же температуре.
Примечание: Черта под значениями в таблице означает фазовый переход воды в пар, то есть цифры под чертой относятся к пару, а выше ее — к воде. Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000! Размерность теплопроводности воды в таблице Вт/(м·град).
Источник
Плотность воды в зависимости от температуры
Принято считать, что плотность воды равна 1000 кг/м 3 , 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?
Максимальная плотность воды достигается при температуре 3,8…4,2°С. В этих условиях точное значение плотности воды составляет 999,972 кг/м 3 . Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.
Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м 3 и г/мл.
В таблице приведены значения плотности воды в кг/м 3 и в г/мл (г/см 3 ), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м 3 или 0,9971 г/мл.
Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м 3 . Плотность соленой воды и водных растворов солей можно узнать в этой таблице.
Плотность воды при различных температурах — таблица
t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл |
999,8 | 0,9998 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 | |
0,1 | 999,8 | 0,9998 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999,9 | 0,9999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999,9 | 0,9999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999,9 | 0,9999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999,7 | 0,9997 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999,5 | 0,9995 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999,2 | 0,9992 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503,5 | 0,5035 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488,5 | 0,4885 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470,6 | 0,4706 |
52 | 987,1 | 0,9871 | 150 | 916,8 | 0,9168 | 370 | 448,4 | 0,4484 |
54 | 986,2 | 0,9862 | 160 | 907,3 | 0,9073 | 371 | 435,2 | 0,4352 |
56 | 985,2 | 0,9852 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984,2 | 0,9842 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983,2 | 0,9832 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |