Слайд лекция 4 средства, влияющие на эфферентную иннервацию м-холиномиметики, антихолинэстеразные средства. н-холиномиметики. — презентация

Функция

Ацетилхолин (ACh) — нейромедиатор, обнаруженный в головном мозге , нервно-мышечных соединениях и вегетативных ганглиях . Мускариновые рецепторы используются в следующих ролях:

Рецепторы восстановления

Строение мускаринового ацетилхолинового рецептора М2.

ACh всегда используется как нейротрансмиттер в вегетативном ганглии . Никотиновые рецепторы постганглионарного нейрона ответственны за начальную быструю деполяризацию (Fast EPSP ) этого нейрона. Вследствие этого никотиновые рецепторы часто называют рецепторами постганглионарных нейронов ганглия . Однако последующая гиперполяризация ( IPSP ) и медленная деполяризация (Slow EPSP), которые представляют собой восстановление постганглионарного нейрона от стимуляции, на самом деле опосредуются мускариновыми рецепторами типов M 2 и M 1 соответственно (обсуждаются ниже).

Периферические вегетативные волокна (симпатические и парасимпатические волокна) анатомически классифицируются как преганглионарные или постганглионарные волокна , а затем обобщаются как адренергические волокна, выделяющие норадреналин, или холинергические волокна, оба выделяющие ацетилхолин и экспрессирующие рецепторы ацетилхолина. И преганглионарные симпатические волокна, и преганглионарные парасимпатические волокна являются холинергическими. Большинство постганглионарных симпатических волокон являются адренергическими: их нейромедиатор — норадреналин, за исключением постганглионарных симпатических волокон потовых желез, пилоэректильных мышц волос на теле и артериол скелетных мышц адреналин / норадреналин не используется.

Мозгового вещества надпочечников считается симпатической ганглий и, как и другие симпатических ганглиев, снабжена холинергических преганглионарных симпатических волокон: ацетилхолин является нейромедиатором используется в этом синапсе. В Хромаффинные клетках мозгового вещества надпочечников действуют как «модифицированные» нейроны, высвобождающего адреналин и норадреналин в кровь в качестве гормонов , а не в качестве нейротрансмиттеров. Остальные постганглионарные волокна периферической вегетативной системы относятся к парасимпатическому отделу; все являются холинергическими волокнами и используют ацетилхолин в качестве нейромедиатора.

Постганглионарные нейроны

Другая роль этих рецепторов — на стыке иннервируемых тканей и постганглионарных нейронов в парасимпатическом отделе вегетативной нервной системы. Здесь ацетилхолин снова используется в качестве нейромедиатора, а мускариновые рецепторы образуют основные рецепторы иннервируемой ткани.

Иннервируемая ткань

Очень немногие части симпатической системы используют холинергические рецепторы. В потовых железах рецепторы мускаринового типа. Симпатическая нервная система также имеет некоторые преганглионарные нервы, заканчивающиеся хромаффинными клетками в мозговом веществе надпочечников , которые выделяют адреналин и норадреналин в кровоток. Некоторые считают, что хромаффинные клетки представляют собой модифицированные постганглионарные волокна ЦНС. В мозговом веществе надпочечников ацетилхолин используется в качестве нейромедиатора, а рецептор относится к никотиновому типу.

Соматическая нервная система использует никотиновый рецептор к ацетилхолину в нервно — мышечном соединении.

Высшая центральная нервная система

Мускариновые рецепторы ацетилхолина также присутствуют и распределены по всей местной нервной системе в постсинаптических и пресинаптических положениях. Есть также некоторые свидетельства наличия постсинаптических рецепторов на симпатических нейронах, позволяющих парасимпатической нервной системе подавлять симпатические эффекты.

Пресинаптическая мембрана нервно-мышечного перехода

Известно, что мускариновые рецепторы ацетилхолина также появляются на пресинаптической мембране соматических нейронов в нервно-мышечном соединении, где они участвуют в регуляции высвобождения ацетилхолина.

Принцип действия

Антихолинэстеразные препараты блокируют абсолютно все активные каталитические районы ацетилхолинэстеразы. Подобные процессы приводят к накоплению ацетилхолина в области синаптической щели. В рамках классификации процессов по механизму воздействия происходит разделение на такие группы, как необратимое и оборотное влияние.

При введении прямого типа холиномиметиков в организме могут значительно преобладать эффекты, связанные с возбуждением нервов парасимпатического типа. К примеру, это будет выражаться в виде замедления сердечного ритма, уменьшения интенсивности сокращений сердца.

Холиномиметики

Бетанехол – синтетический мускариновый агонист, не обладающий значительным никотиновым действием. Его можно использовать для стимулирования сокращения детрузора при смешанных поражениях двигательных нейронов типа А. 

Бетанехол принимается примерно за час до еды и перед сном. Назначается в комбинации с методами Вальсальва или Креде, периодической катетеризацией. 

Как холинергический агонист, этот препарат может вызывать побочные эффекты, включая:

  • гипотензию;
  • брадикардию;
  • бронхоспазм;
  • тошноту/рвоту;
  • спазмы в животе;
  • диарею. 

Его следует с осторожностью применять людям с астмой, хронической обструктивной болезнью легких, гипертиреозом, язвенной болезнью, кишечной непроходимостью, обструкцией мочевыводящих путей, ишемической болезнью сердца (особенно при блокаде проводимости), паркинсонизмом

Воздействие на холинорецепторы[править | править код]

Основные эффекты известных фармакологических веществ, влияющих на м-холинорецепторы, связаны с их взаимодействием с постсинаптическими м2— и м3-холинорецепторами.

Н-холинорецепторы находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (в симпатических и парасимпатических ганглиях), мозговом слое надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц и ЦНС (в нейрогипофизе, клетках Реншоу и др.). Чувствительность к веществам разных н-холинорецепторов неодинакова. Так, н-холинорецепторы вегетативных ганглиев (н-холинорецепторы нейронального типа) существенно отличаются от н-холинорецепторов скелетных мышц (н-холинорецепторы мышечного типа). Этим объясняется возможность избирательного блока ганглиев (ганглиоблокирующими препаратами) или нервно-мышечной передачи (курареподобными препаратами).

В регуляции высвобождения ацетилхолина в нейроэффекторных синапсах принимают участие пресинаптические холино- и адренорецепторы. Их возбуждение угнетает высвобождение ацетилхолина.

Взаимодействуя с н-холинорецепторами и изменяя их конформацию, ацетилхолин повышает проницаемость постсинаптической мембраны. При возбуждающем эффекте ацетилхолина ионы натрия проникают внутрь клетки, что ведет к деполяризации постсинаптической мембраны. Первоначально это проявляется локальным синаптическим потенциалом, который, достигнув определенной величины, генерирует потенциал действия. Затем местное возбуждение, ограниченное синаптической областью, распространяется по всей мембране клетки. При стимуляции м-холинорецепторов в передаче сигнала важную роль играют G-белки и вторичные мессенджеры (циклический аденозинмонофосфат – цАМФ; 1,2-диацилглицерол; инозитол(1,4,5)трифосфат).

Действие ацетилхолина очень кратковременно, так как он быстро гидролизуется ферментом ацетилхолинэстеразой (например, в нервно-мышечных синапсах или, как в вегетативных ганглиях, диффундирует из синаптической щели). Холин, образующийся при гидролизе ацетилхолина, в значительном количестве (50%) захватывается пресинаптическими окончаниями, транспортируется в цитоплазму, где вновь используется для биосинтеза ацетилхолина.

Понижение внутриглазного давления

Наряду с сужением зрачка М-холиномиметики в рамках своего воздействия на глаз могут вызывать еще один весьма важный клинический эффект, а именно происходит понижение внутриглазного давления. Именно этот процесс и используется для лечения глаукомы.

Подобный эффект можно объяснить тем, что во время сужения зрачка утолщается радужка, благодаря чему происходит расширение лимфатических щелей, расположенных в углу передней камеры зрительного органа. Благодаря этому происходит увеличение оттока жидкости из внутренних районов глаза, что, собственно, и вызывает снижение внутриглазного давления. Правда, подобный механизм не считается единственной причиной снижения внутриглазного давления, который вызывается М-холиномиметиками, ввиду того, что отсутствует строгая корреляции между провоцируемыми ими миотическими эффектами и снижением внутриглазного давления.

М-, Н-ХОЛИНОМИМЕТИКИ НЕПРЯМОГО ДЕЙСТВИЯ (АНТИХОЛИНЭСТЕРАЗНЫЕ СРЕДСТВА)

Эти лекарственные средства блокируют действие холинэстеразы — фер­мента, разрушающего ацетилхолин, благодаря чему происходит накопление ацетилхолина, который и оказывает длительное действие на М- и Н-холинорецепторы. Выделяют антихолинэстеразные средства обратимого действия, ко­торые временно инактивируют фермент холинэстеразу: физостигмин, прозерин, оксазил, галантамин и др. Через несколько часов после введения этих препаратов ак­тивность холинэстеразы полностью восстанавливается. Другая группа веществ — антихолинэстеразные средства необратимого действия: параксон, армин и др.— вызывает более длительную блокаду холинэстеразы; они явля­ются более токсичными. К этой группе относятся и некоторые инсектициды (хлорофос, карбофос и др.) и отравляющие вещества. Антихолинэстеразные средства применяют для лечения глаукомы (М-холиномиметическое дейст­вие), устранения послеоперационной атонии кишечника и мочевого пузыря (М-холиномиметическое действие), миастении, остаточных явлений полиомие­лита, нарушений нервно-мышечной передачи (Н-холиномиметическое дейст­вие), а также используют при передозировке миорелаксантов антидеполяризующего действия (Н-холиномиметическое действие). Побочные действия антихолинэстеразных средств: брадикардия, понижение артериального давления, усиление секреции желез, повышение тонуса скелетной мускулатуры, тошнота, рвота. Противопоказа­ния к применению антихолинэстеразных средств: эпилепсия, бронхиальная астма, органические заболевания сердца.

ФИЗОСТИГМИНА САЛИЦИЛАТ — применяют главным образом в глазной практике при глаукоме (понижает внутриглазное давление), хоро­ший терапевтический эффект дает сочетание растворов физостигмина салицилата (0,25 %) и пилокарпина гидрохлорида (1 %). Физостигмина салицилат используют в виде глазных капель, 0,25-1 % раствор. Список А.

Пример рецепта физостигмина салицилата на латинском:

Rp.: Sol. Physostigmini salicylatis 1 % 5 ml

M. D. in vitro nigro

S. Глазные капли, по l-2 капли 3-4 раза в день.

Rp.: Pilocarpini hydrochloridi 0,1

Physostigmini salicylatis 0,025

Aq. destill. 10 ml

M. D. in vitro nigro

S. Глазные капли. По 1-2 капли 4-6 раз в день.

ПРОЗЕРИН (фармакологические аналоги: неостигмин) — применяют при миастении, параличах, па­резах, остаточных явлениях полиомиелита, глаукоме, атонии кишечника, моче­вого пузыря. Прозерин используется как антагонист миорелаксантов конкурентного (антидеполяризующего) типа действия. Побочные действия прозерина и противопока­зания к применению — характерные для всей этой группы препаратов. Форма выпуска прозерина: порошок; таблетки по 0,015 г; ампулы по 1 мл 0,05 % раствора; гранулы по 60 г в упаковке. Список А.

Пример рецепта прозерина на латинском:

Rp.: Sol. Proserini 0,5 % 5 ml

D. S. Глазные капли.

Rp.: Tab. Proserini 0,015 N. 20

D. S. По 1 таблетке 2 раза в день.

Rp.: Sol. Proserini 0,05 % 1 ml

D. t. d. N. 10 in ampull.

S. По 0,5-1 мл подкожно 1-2 раза в день.

Предыдущая — Следующая >>

Виды холинорецепторов[править | править код]

Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых

  • мускариночувствительных холинорецепторов — м-холинорецепторы (мускарин — алкалоид из ряда ядовитых грибов, например мухоморов) и
  • никотиночувствительных холинорецепторов — н-холинорецепторы (никотин — алкалоид из листьев табака).

М-холинорецепторы расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных холинергических (парасимпатических) волокон. Кроме того, они имеются на нейронах вегетативных ганглиев и в ЦНС — в коре головного мозга, ретикулярной формации). Установлена гетерогенность м-холинорецепторов разной локализации, что проявляется в их неодинаковой чувствительности к фармакологическим веществам.

Выделяют следующие виды м-холинорецепторов:

  • м1-холинорецепторы в ЦНС и в вегетативных ганглиях (однако последние локализуются вне синапсов);
  • м2-холинорецепторы — основной подтип м-холинорецепторов в сердце; некоторые пресинаптические м2-холинорецепторы снижают высвобождение ацетилхолина;
  • м3-холинорецепторы — в гладких мышцах, в большинстве экзокринных желез;

Основные эффекты веществ, влияющих на м-холинорецепторы,связаны с их взаимодействием с постсинаптическими м2- и м3- холинорецепторами

Проведение нервных сигналов

Мускариновые рецепторы способны изменять активность клеток, на которых они расположены, с помощью большого количества путей передачи сигнала. Активация биохимических путей передачи нервного импульса происходит в зависимости от природы и количества рецепторного подтипа, эффекторных молекул, а также протеинкиназ, которые экспрессуются в данной ткани и возможности взаимного влияния между разными цепями передачи нервных сигналов. Фосфолипаза С высвобождает вторичный мессенджер, диацилглицерол и инозитол-трифосфат, с фосфатидилинозитолом. Диацилглицерол активирует протеинкиназу С, в то время как инозитолтрифосфат высвобождает Са2+ из внутриклеточных резервуаров. Парные номера рецепторных подтипов ингибируют аденизат-циклази, вовлекая в этот процесс G-белки подтипа Gі.

Бензодиазепины

Считается, что бензодиазепины, например, диазепам, проявляют клинические эффекты, связываясь в определенном месте на рецепторе ГАМК-А, чтобы усилить эффекты ингибирующего нейромедиатора ГАМК (гамма-аминомасляная кислота). Бензодиазепины связываются в спинномозговом и надспинальном отделах, снижая тонус скелетных мышц, включая внешний мочевой сфинктер. 

Таким образом, диазепам использовался в клинической практике для лечения спастичности внешнего сфинктера из-за поражения верхнего двигательного нейрона или нейрогенной дисфункции мочевого пузыря смешанного типа А. В результате снижение сопротивления выходу мочи из мочевого пузыря способствует более полному опорожнению мочевого пузыря.

Побочные эффекты бензодиазепинов включают:

  • седативный эффект;
  • делирий (бред);
  • угнетение дыхания;
  • мышечную слабость;
  • запор;
  • помутнение зрения. 

Бензодиазепины также могут вызывать физическую и психологическую зависимость.

Инстилляции мочевого пузыря для лечения нейрогенной дисфункции

В случаях, когда нейрогенная дисфункция мочевого пузыря не поддается лечению пероральными препаратами, возможно применение несколько новых фармакологических вариантов, включая внутривенные, внутрипузырные и интратекальные средства (вводятся в область спинного мозга).

Например, рассматривается внутрипузырное введение растворов ваниллоидов – капсаицина или резинифератоксина (RTX), снижающих гиперактивность детрузора. Это достигается путем избирательной десенсибилизации немиелинизированных С-волокон сенсорных нервов, которые передают уротелиальную боль и температурные ощущения. 

В высоких концентрациях эти препараты надолго  подавляют ответы С-волокон на стимуляцию. После повреждения спинного мозга происходит повышенная экспрессия переходного (транзиторного) рецепторного потенциала катионных каналов подсемейства V члена 1 (TRPV1) ваниллоидных рецепторов в уротелиальных клетках и С-волокнах. 

Экспериментальные данные свидетельствуют о том, что активация этих рецепторов вовлечена в гиперактивность детрузора. Внутрипузырное введение капсаицина или RTX после таких поражений могло бы уменьшить гиперрефлексию мочевого пузыря. Исследования подтвердили, что инстилляции (капельная подача) ваниллоидов в мочевой пузырь действительно улучшают нейрогенную гиперактивность детрузора, связанную с повреждением спинного мозга или рассеянным склерозом.

Выяснено, что капсаицин значительно ингибирует гиперактивность мышц. Однако он может вызвать временное обострение симптомов мочевого пузыря. При инстилляции резинифератоксина RTX этого нет. Исследование введения RTX при нейрогенной гиперактивности детрузора обнаружило улучшение состояния или полное излечение недержания мочи у 75% пациентов, причем у 58% эффекты сохранялись не менее года. Для лечения гиперактивности мочевого пузыря RTX также можно вводить интратекально.

Клиническое использование ваниллоидов затруднено из-за их остроты и нестабильности растворов. Чтобы избежать этих проблем, разрабатываются пероральные антагонисты TRPV1, например, уже существует GRC 6211. В исследованиях повреждений спинного мозга на животных эти препараты снижали высокое внутрипузырное давление и благотворно влияли на рефлекторные сокращения мочевого пузыря.

Н-холиномиметики

Н-холиномиметиками считаются вещества, возбуждающие н-холинорецепторы. Такие элементы еще называют чувствительными к никотину рецепторами. Н-холинорецепторы связаны с каналами клеточных мембран. При возбуждении Н-холинорецепторов каналы открываются и происходит вхождение в деполяризацию мембраны, что вызывает энергетический эффект. Холиномиметики в фармакологии применяются с давних времен.

Н-холинорецепторы преобладают в нейронах парасимпатических и симпатических ганглиев, а также в хромаффинных клетках мозгового компонента надпочечников и в районе каротидных клубков. Помимо этого, Н-холинорецепторы могут быть обнаружены в центральной нервной системе, в особенности в клетках, которые оказывают тормозное воздействие на мотонейроны спин­ного мозга.

Н-холинорецепторы локализуются в нервно-мышечных синап­сах, то есть в области концевых пластинок скелетных мышц. В случае их стимуляции может происходить сокращение скелетных структур.

Общие сведения

Семейство мускариновых рецепторов впервые было обнаружено благодаря их способности связывать алкалоид мускарин.
Они были опосредованно описаны в начале XX века при исследовании эффектов кураре. Их непосредственное исследование началось в 20-30 годах того же столетия, после того, как соединение ацетилхолин (ACh) было идентифицировано в качестве нейромедиатора, передающего нервный сигнал в нервно-мышечных синапсах. Базируясь на родственности эффектов ацетилхолина и природных растительных алкалоидов, было выделено два общих класса ацетилхолиновых рецепторов: мускариновые и никотиновые. Мускариновые рецепторы активируются мускарином и блокируются атропином, в то время как никотиновые рецепторы активируются никотином и блокируются кураре; со временем внутри обоих типов рецепторов было открыто значительное количество подтипов. В нервно-мышечных синапсах представленные только никотиновые рецепторы. Мускариновые рецепторы найдены в клетках мускулатуры и желез и, вместе с никотиновыми, в нервных ганглиях и нейронах ЦНС.

Миотическое воздействие

Миотическое воздействие М-холиномиметиков при условии чередования их с мидриатическими препаратами можно использовать также для разрывания спаек, которые препятствуют регуляции ширины зрачков. Резорбтивное воздействие веществ, которые возбуждают М-холинорецепторы, используется при атонии кишечника и мочевого пузыря.

Для того чтобы избежать напрасного процесса возбуждения ганглиев, предпочтительно избирательно применять действующие М-холиномиметики, такие, как «Мехолин» либо «Бетанехол». Их вводят подкожно для того, чтобы обеспечить быстрое воздействие, а также точность дозировки. Учитывая то, что данный путь не связан с всасыванием посредством слизистой, подкожно вводят растворы четвертичных аминов, среди которых «Карбахолин», «Мехолин» или «Бетанехол». Действие холиномиметиков до конца не изучено.

Структура

Мускариновый рецептор любого типа состоит из одной полипептидной цепи длиной 440—540 остатков аминокислот, с внеклеточным N-концом и внутриклеточным С-концом. Гидропатический анализ аминокислотной последовательности выявил семь отрезков длиной в 20-24 остатков, которые формируют спиралевидные структуры, пронизывающие клеточную мембрану нейрона. Аминокислотная последовательность в этих отрезках является очень консервативной (более чем 90 % совпадений) во всех пяти типах мускариновых рецепторов. Между пятым и шестым доменами, которые пронизывают мембрану, находится большая внутриклеточная петля, которая является очень вариативной по своему составу и размерам у разных типов рецепторов. На третьей внутриклеточной петле, а также на С-конце рецепторной молекулы, расположено несколько последовательных отрезков, на которых происходит фосфорилирование при передаче нервного импульса. Остатки цистеина, один из которых расположен близ третьего трансмембранного сегмента, а другой — в середине второй внеклеточной петли, связаны дисульфидным мостиком.

Благодаря мутационному анализу были выявлены участки на рецепторной молекуле, которые вовлечены в процесс связывания лиганда и G-белков. Ацетилхолин связывается с участком, который находится в складке, сформированной спирально закрученными трансмембранными доменами. Остаток аспартата в третьем трансмембранном домене принимает участие в ионном взаимодействии с четвертичным азотом ацетилхолина, в то время как последовательности остатков тирозина и треонина, расположенные в трансмембранных сегментах приблизительно на трети расстояния от поверхности мембраны, формируют водородные связи с мускарином и его производными. Согласно результатам фармакологических исследований, сайт связывания антагонистов перекрывает сайт, с которым связывается ацетилхолин, но в дополнение привлекает к своему составу гидрофобные участки белковой молекулы рецептору и окружающей клеточной мембраны. Мускариновые рецепторы, кроме того, содержат сайт (или сайты), благодаря которым происходит регуляция рецепторного ответа большим количеством соединений, в частности галамином, который снижает степень диссоциации холинергических лигандов. Сайт связывания галамина включает шестой трансмембранный домен, а также третью внешнеклеточную петлю.

Большое количество участков данного рецептора принимают участие во взаимодействии с передающими G-белками. Это особенно касается структур второй внутриклеточной петли и N- и С-терминальных отрезков третьей внутриклеточной петли. Десенситизация мускаринових рецепторов, достоверно, вызывает фосфорилирование треониновых остатков на С-терминальном отрезке рецепторной молекулы, а также на нескольких участках третьей внутриклеточной петли.

Классификация

Как и другие трансмембранные рецепторы , рецепторы ацетилхолина классифицируются в соответствии с их «фармакологией» или в соответствии с их относительным сродством и чувствительностью к различным молекулам. Хотя все рецепторы ацетилхолина по определению реагируют на ацетилхолин, они также реагируют на другие молекулы.

  • Никотиновые рецепторы ацетилхолина ( nAChR , также известные как « ионотропные » рецепторы ацетилхолина) особенно чувствительны к никотину . Рецептор никотина ACh также является ионным каналом Na + , K + и Ca 2+ .
  • Мускариновые рецепторы ацетилхолина ( mAChR , также известные как « метаботропные » рецепторы ацетилхолина) особенно чувствительны к мускарину .

Никотиновые и мускариновые — два основных типа «холинергических» рецепторов.

Заключение

Таким образом, холиномиметические средства являют собой вещества, способные возбуждать холинорецепторы, то есть биохимические системы организма. Они не могут быть однородными. Они избирательно чувствительные к никотину и находятся в ганглиях симпатических, а, кроме того, парасимпатических нервов. Также их можно наблюдать в мозговом веществе надпочечников наряду с каротидными клубками и в окончаниях двигательных элементов центральной нервной системы. Холинорецепторы могут также проявлять избирательную чувствительность к алкалоиду мускарину.

Нами рассмотрена классификация холиномиметиков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector