Сила тяжести

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину — уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации — сила упругости.

Закон Гука

Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел здесь.

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Второй закон Ньютона

Равнодействующая всех сил приложенных к телу (векторная сумма всех сил)
($\bar{F}$) равна производной от импульса тела по времени:

где $\bar{p}=m \bar{v}$ — импульс тела, m–масса рассматриваемого тела,
$\bar{v}$ — скорость. Надо отметить, что уравнение (1) строго применимо только относительно
материальной точки. Если рассматривается протяженное тело, то под скоростью понимают скорость движения центра масс тела.

Если масса материальной точки (m)не изменяется во времени, то формула, определяющая результирующую силу, приложенную к ней
(второй закон Ньютона) можно представить в виде:

где $\bar{a}$ – ускорение, которое материальная точка приобретает в результате
воздействия на нее силы. Выражение (2) показывает то, что если
$\bar{F}$=0, то тело (материальная точка) движется равномерно и прямолинейно или покоится.

Если сила, приложенная к телу, является постоянной (по модулю и направлению), то формулу для нее можно представить в виде:

Сила отдачи

Все знают, что при стрельбе из любого огнестрельного оружия возникает так называемая отдача. Она проявляется в том, что приклад ружья ударяет по плечу стрелка, а танк или пушка откатываются назад, когда вылетает снаряд из дула. Все это проявления силы отдачи. Формула для нее аналогична той, которая была дана в начале статьи при определении понятия «сила».

Как можно догадаться, причина появления сил отдачи заключается в проявлении закона сохранения импульса системы. Так, вылетевшая из дула ружья пуля уносит ровно такой импульс, которым приклад бьет по плечу стрелка, в итоге полное количество движения остается постоянным (равным нулю для относительно покоящейся системы).

Взрывная сила

Взрывная сила – это способность сократительных мышечных структур производить максимальное усилие за счет мгновенного перехода от состояния растяжения мышцы к ее сокращению по всему диапазону движения.

Примеры: метание или толкание тяжестей, тяжелоатлетические рывки и толчки штанги.

Преимущества развития взрывной силы:

o   Ускорение реакции вовлечения в работу моторных единиц.

o   Ускорение общей реакции.

o   Улучшение внутримышечной координации.

o   Улучшение упругости мышц и соединительной ткани.

o   Активация мышечных волокон II типа.

Как тренировать:

Для развития взрывной силы необходимо использовать многосуставные, а также изолирующие упражнения со свободными весами.

Интенсивность: от низкой до умеренной, на уровне приблизительно 45-75% от 1ПМ.

Повторения: 1-6

Темп: максимальная скорость.

Сеты: 2-5+

Отдых: 30-90 секунд.

Абсолютная и относительная сила

Оценивая величину усилия в том или ином упражне­нии или простом движении, применяют термины «абсо­лютная» и «относительная» сила.

Абсолютная сила — предельное, максимальное усилие, которое спортсмен может развить в динамичес­ком или статическом режиме. Примером проявления абсолютной силы в динамическом режиме является под­нимание штанги или приседание со штангой предельного веса. В статическом режиме абсолютная сила может быть проявлена, например, когда максимальное усилие прилагается к неподвижному объекту («выжимание» неподвижно закрепленной штанги).

Относительная сила — величина силы, прихо­дящаяся на 1 кг веса спортсмена. Этот показатель при­меняется в основном для того, чтобы объективно срав­нить силовую подготовленность различных спортсменов.

Что такое сила всемирного тяготения?

Притяжение существует не только между Землей и всеми телами, находящимися на ней, но и всеми телами между собой. Такое притяжение всех тел в нашей Вселенной называется всемирным тяготением.

Ты когда-нибудь видел, как магнит притягивает к себе различные предметы? Так вот, всемирное тяготение можно сравнить с магнитом: тела притягиваются не только к Земле, но и друг к другу.

На какие тела действует сила всемирного тяготения?

Эта сила действует абсолютно на все тела, которые имеют какой-либо, пусть даже самый незначительный вес. Именно благодаря такому притяжению мы не улетаем в открытый космос вместе с другими окружающими нас предметами, а остаемся на Земле.

Если бы сила притяжения отсутствовала, то любое подброшенное тело никогда бы не вернулось на Землю.

Согласно легенде, английский ученый Исаак Ньютон открыл закон всемирного тяготения после того, как на его глазах с дерева оторвалось яблоко и упало на землю. Ньютон задумался над тем, почему оно упало вертикально вниз, перпендикулярно земле, а не в сторону. Позже гениальный ученый сумел доказать, что все тела притягиваются друг к другу.

Ускорение и сила всемирного тяготения

Ускорение — это изменение скорости в течение единицы времени. Представь, что с большой высоты на Землю падает какое-либо тело. Пока расстояние до Земли очень большое, ее сила притяжения не так велика. Но по мере приближения тела к поверхности Земли сила притяжения Земли возрастает, и ускорение движения тела становится равным 9,8 м/с2. Например, если ты бросишь яблоко с большой высоты, скажем, с пятого этажа, оно будет лететь со скоростью 9,8 м/с спустя 1 секунду падения и уже 19,6 м/с после второй секунды. То есть с каждой секундой падения его скорость будет увеличиваться почти на 10 м/с!

Ускорение и масса тела

Ускорение не зависит от массы падающего тела

Например, два тела, падающие с одинаковой высоты, достигнут земли одновременно, при этом не важно, что падает — яблоко или машина. Конечно, если ты бросишь листик бумаги и камешек, то камешек окажется на земле раньше, но только лишь потому, что листику мешает падать сопротивление воздуха

Но если предположить, что листик бумаги и камешек будут падать вниз внутри высокого стеклянного цилиндра, из которого откачан воздух, то оба предмета достигнут дна одновременно.

Что такое физические качества спортсмена

Физические качества – это врожденные (унаследованные генетически) морфофункциональные качества, благодаря которым возможна физическая (материально выраженная) активность человека, получающая свое полное проявление в целесообразной двигательной деятельности. К основным физическим качествам относят мышечную силу, быстроту, выносливость, гибкость и ловкость.

5 физических качеств спортсмена

В спорте важно уделять внимание развитию основных физических качеств: быстроты, силы, ловкости, выносливости и гибкости. Для лучшего понимания ниже представлено определение каждого из качеств

Быстрота — это способность человека выполнять двигательное действие за минимальное время. Скорость, требующая уже освоенности основных движений, лучше всего развивается в подвижных играх и эстафетах.

Сила — это способность человека преодолевать внешнее сопротивление или противостоять ему за счёт мышечных усилий. Сила нарабатывается в общеразвивающих упражнениях с небольшим отягощением (набивной мяч, например) и в парных упражнениях, где нужно преодолевать разумное сопротивление партнера.

Ловкость — это комплекс способностей человека, который позволяет осваивать новые движения и перестраивать их в соответствии с внезапно меняющейся обстановкой. Это сложное качество, требующее координации и точности движений, развивается в основных видах активности — бег, работа с предметами и при выполнении упражнений в меняющихся условиях — спортивные игры и эстафеты.

Выносливость — это способность организма сопротивляться утомлению во время продолжительной или интенсивной физической активности. Развитие выносливости требует большего количества повторений одних и тех же движений

Важно не переусердствовать, иначе у ребёнка пропадёт интерес к практике

Гибкость — это способность тела человека достигать наивысшей амплитуды движений в нужном направлении. Гибкость развивается при выполнении движений с большей амплитудой, чем в быту, но в анатомически допустимых пределах. При этом равновесие развивается при выполнении упражнений с уменьшением площади опоры (например, встать на носочки, на одну ногу) и на поднятых от земли предметах (скамейка, полусферы).

Двигательные способности

В современной литературе различают термины «физические качества» и «физические (двигательные) способности».

Двигательные способности – это индивидуальные особенности, определяющие уровень двигательных возможностей человека.

Основу двигательных способностей человека составляют физические качества, а форму проявления — двигательные умения и навыки.

К двигательным способностям относят:

  • силовые
  • скоростные
  • скоростно-силовые
  • двигательно-координационные способности
  • общую и специфическую выносливость.

Необходимо помнить, что, когда говорится о развитии силы мышц или быстроты, под этим следует понимать процесс развития соответствующих силовых или скоростных способностей.

У каждого человека двигательные способности развиты по-своему. В основе разного развития способностей лежит иерархия разных врожденных (наследственных) анатомо-физиологических задатков:

  • анатомо-морфологические особенности мозга и нервной системы (свойства нервных процессов — сила, подвижность, уравновешенность, индивидуальные варианты строения коры, степень функциональной зрелости ее отдельных областей и др.);
  • физиологические (особенности сердечно-сосудистой и дыхательной систем — максимальное потребление кислорода, показатели периферического кровообращения и др.);
  • биологические (особенности биологического окисления, эндокринной регуляции, обмена веществ, энергетики мышечного сокращения и др.);
  • телесные (длина тела и конечностей, масса тела, масса мышечной и жировой ткани и др.);
  • хромосомные (генные).

На развитие двигательных способностей влияют также и психодинамические задатки (свойства психодинамических процессов, темперамент, характер, особенности регуляции и саморегуляции психических состояний и др.).

О способностях человека судят не только по его достижениям в процессе обучения или выполнения какой-либо двигательной деятельности, но и по тому, как быстро и легко он приобретает эти умения и навыки.

Способности проявляются и развиваются в процессе выполнения деятельности, но это всегда результат совместных действий наследственных и средовых факторов.

Для развития двигательных способностей необходимо создавать определенные условия деятельности, используя соответствующие физические упражнения на скорость, на силу и т.д. Однако эффект тренировки этих способностей зависит, кроме того, от индивидуальной нормы реакции на внешние нагрузки.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Изменение веса тела

Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».

Что такое сила тяжести?

Сила тяжести — это сила, с которой Земля притягивает к себе тело. Эта сила всегда направлена вертикально вниз. Запомни: чем больше масса тела, тем больше сила тяжести, действующая на это тело. Именно поэтому нам трудно поднять или сдвинуть с места очень тяжелые предметы. И чем тяжелее предмет, тем больше сила тяжести и тем сложнее нам преодолеть эту силу. Сила тяжести, действующая на тело, несколько отдаленное от поверхности Земли, зависит от массы тела и расстояния.

«Космические» факты

Каждый космонавт переживает так называемую космическую болезнь: при отсутствии силы тяготения он привыкает к тому, что все окружающие предметы, да и он сам, летают, а не падают. Поэтому по возвращении на Землю космонавты в течение некоторого времени обращаются с вещами так, как привыкли это делать в космосе: просто отпускают их, при этом совершенно не задумываясь над тем, что они сразу упадут на землю или на пол.

В условиях невесомости в организме космонавта увеличивается объем циркулирующей крови, что, в свою очередь, может привести к повышению давления. Однако сердце космонавта очень интересно приспосабливается к данной ситуации: во избежание дополнительной нагрузки оно уменьшается в объеме и, соответственно, начинает перекачивать меньшее количество крови. Это своеобразная защитная реакция на увеличение объема крови.

Ученые выяснили, что в случае длительного пребывания в невесомости (состояние, при котором вес тела равен нулю) в организме человека происходят некоторые изменения. Например, рост космонавтов увеличивается почти на 5 см за счет расхождения позвоночных дисков. В течение 10 дней после возвращения на Землю рост становится прежним.

Фосфокреатин – креатиновая система.

Креатин Фосфокреатин – химическое соединение, имеющее высокоэнергетическую фосфатную связь, которая может быть гидролизована, чтобы обеспечить энергию и повторно синтезировать АТФ. Это происходит в течение очень короткого времени. Следовательно, вся энергия, запасенная в мускулах, почти мгновенно доступна для сокращения мышц, так же как и энергия, запасенная в АТФ.

Хочешь помочь проекту? Отключи AdBlock, тем самым мы сможем получить доход за показ рекламы.

При выполнении коротких и быстрых движений, будь то спринт или рывок штанги, АТФ расщепляется на АДФ , в результате чего происходит ресинтез АТФ с помощью креатинфосфата. Этот метод является самым быстрым и простым способом получения энергии для сокращения мышц. Такой источник энергии может обеспечивать мышечное сокращение около 5 секунд, так как мышечные клетки хранят небольшое количество АТФ и креатинфосфата. Данная энергетическая система работает без кислорода и соответственно называется анаэробным методом производства энергии.

Таким образом, энергия из системы АТФ-фосфокреатин (хранящийся в мышцах) используется для максимально коротких всплесков мышечной силы.

Сила упругости

При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название «сила упругости». Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.

Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие – их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее «x». Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).

Математическая модель упругого взаимодействия описывается законом Гука.

Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:

Fy = -kx (в векторной записи).

Знак «-» говорит о противоположности направления деформации и силы.

В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид Fy = kx, используется только при упругих деформациях.

Вес тела

Вес тела — это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести — сила, которая возникает в результате взаимодействия с Землей. Вес — результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же — сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.

Сила реакции опоры и вес — силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес — это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью. Невесомость — состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!

Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес — сила, измеряется в Ньютонах. Как верно ответить на вопрос: «Сколько ты весишь»? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!. Перегрузка — отношение веса к силе тяжести

Перегрузка — отношение веса к силе тяжести

Понятие о силе

Вопрос, что такое сила в физике, начнем рассматривать с ее определения. Под ней полагают величину, способную изменять количество движения рассматриваемого тела. Математическое выражение для этого определения выглядит так:

Здесь dp¯ — это изменение количества движения (иначе его называют импульсом), dt — промежуток времени, за который оно изменяется. Отсюда видно, что F¯ (сила) является вектором, то есть для ее определения необходимо знать, как модуль (абсолютное значение), так и направление ее приложения.

Как известно, импульс измеряется в кг*м/с. Это означает, что F¯ вычисляется в кг*м/с2. Эта единица измерения получила название ньютона (Н) в СИ. Поскольку единица м/с2 — это мера измерения линейного ускорения в классической механике, то из определения силы автоматически следует 2-й закон Исаака Ньютона:

В такой формуле a¯ = dv¯/dt — ускорение.

Эта формула силы в физике показывает, что в ньютоновской механике величина F¯ характеризуется ускорением, которое она может сообщить телу с массой m.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector